Journal of Basic and Applied Engineering Research

p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 1; January-March, 2017, pp. 90-90

© Krishi Sanskriti Publications

http://www.krishisanskriti.org/Publication.html

Evidence of Multiferroicity in Zn/La Doped CoF₂O₄ Nanoparticles

Manish Kumar^{a, b, c}, Mukund^b, Srishti^b, Aditi^b, Vaibhav^b, S. Shankar^{b, c}, Vinita Tuli^b, O. P. Thakur^c and Anup K.Ghosh^{a,*}

^aDepartment of Physics, Institute of Science, BHU, Varanasi – 221005 ^bDepartment of Physics, ARSD College, University of Delhi, New Delhi-110021 ^cDepartment of Physics, NSIT, University of Delhi, New Delhi-110078

Abstract—Nanoparticles of $Co_{1-x}Zn_xFe_{2-x}La_xO_4$ (x=0.0, 0.1 and 0.3) were synthesized by co-precipitation route. Effects of Zn/La co-doping on structural and multiferroic properties of $Co_{1-x}Zn_xFe_{2-x}La_xO_4$ nanoparticles have been investigated. The powder XRD confirms the phase purity, particle size and cubic spinal structure of the nanoparticles. The size of particles decreases with increase in Zn/La co-doping indicates the short range ordering in $CoFe_2O_4$. Room temperature magnetic measurements confirm the stable saturation magnetization and low coercivity. Ferroelectric P-E loops measurement shows the rounded corners of the loops, which may be the due to the aggregation of $CoFe_2O_4$ nanoparticles with each other resulting out of their strong magnetization. Simultaneous occurrence of saturation magnetization and weak ferroelectricity (P-E loop) confirm the signature of multiferroicity in the Zn/La doped $CoFe_2O_4$ nanoparticles.

Keywords: Co-precipitation; Multiferroics; Structural properties.